变形的度量
基本定义
-
变形梯度张量\bm F
\bm F = \frac{\partial \bm x}{\partial \bm X} \\ F_{i\alpha}=\frac{\partial x_i}{\partial X_\alpha} -
左格林-柯西变形张量\bm C,右格林-柯西变形张量\bm B
\bm C = \bm F^{\rm T}\bm F \\ \bm B = \bm F \bm F^{\rm T} -
拉格朗日有限应变张量(格林-拉格朗日应变张量、格林-圣维南应变张量)\bm E,欧拉应变张量(欧拉-阿尔曼西有限应变张量)\bm e
\bm E=\frac12\left(\nabla_X \bm u + \left(\nabla_X \bm u \right)^{\rm T} +\left(\nabla_X \bm u \right)^{\rm T} \nabla_X \bm u \right)=\frac12(\bm C - \bm I) \\ \bm e=\frac12\left(\nabla_x \bm u + \left(\nabla_x \bm u \right)^{\rm T} +\left(\nabla_x \bm u \right)^{\rm T} \nabla_x \bm u \right)=\frac12(\bm I - \bm B^{-1})
-
应变张量\bm \varepsilon
\bm \varepsilon=\frac12\left(\nabla_x \bm u + \left(\nabla_x \bm u \right)^{\rm T}\right)
无限小应变时
\bm E \approx \bm e \approx \bm \varepsilon = \frac12\left(\nabla_x \bm u + \left(\nabla_x \bm u \right)^{\rm T}\right)
注意
在考虑物体的较大变形时(理论也可兼容小变形,但是复杂度高),在有限变形理论范畴下考虑,在考虑小变形时(例如无损检测用的超声扰动),在无限小应变理论范畴下考虑。